Semi-structured document image matching and recognition

Abstract : This article presents a method to recognize and to localize semi-structured documents such as ID cards, tickets, invoices, etc. Object recognition methods based on interest points work well on natural images but fail on document images because of repetitive patterns like text. In this article, we propose an adaptation of object recognition for image documents. The advantages of our method is that it does not use character recognition or segmentation and it is robust to rotation, scale, illumination, blur, noise and local distortions. Furthermore, tests show that an average precision of 97.2% and recall of 94.6% is obtained for matching 7 di erent kinds of documents in a database of 2155 documents.
Type de document :
Communication dans un congrès
Document Recognition and Retrieval, Feb 2013, San Fransisco, United States. pp.1-12, 2013
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00755748
Contributeur : Olivier Augereau <>
Soumis le : mercredi 21 novembre 2012 - 18:26:15
Dernière modification le : jeudi 22 novembre 2012 - 10:19:23
Document(s) archivé(s) le : vendredi 22 février 2013 - 03:50:40

Fichier

article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00755748, version 1

Collections

Citation

Olivier Augereau, Nicholas Journet, Jean-Philippe Domenger. Semi-structured document image matching and recognition. Document Recognition and Retrieval, Feb 2013, San Fransisco, United States. pp.1-12, 2013. 〈hal-00755748〉

Partager

Métriques

Consultations de
la notice

319

Téléchargements du document

502