Adaptive estimation of mean and volatility functions in (auto)-regressive models

Abstract : In this paper, we study the problem of nonparametric estimation of the mean and variance functionsb and σ2 in a model: Xi+1=b(Xi)+σ(Xi)εi+1. For this purpose, we consider a collection of finite dimensional linear spaces. We estimate b using a mean squares estimator built on a data driven selected linear space among the collection. Then an analogous procedure estimates σ2, using a possibly different collection of models. Both data driven choices are performed via the minimization of penalized mean squares contrasts. The penalty functions are random in order not to depend on unknown variance-type quantities. In all cases, we state nonasymptotic risk bounds in empirical norm for our estimators and we show that they are both adaptive in the minimax sense over a large class of Besov balls. Lastly, we give the results of intensive simulation experiments which show the good performances of our estimator.
Type de document :
Article dans une revue
Stochastic Processes and their Applications, Elsevier, 2002, 97 (1), pp.111-145. 〈10.1016/S0304-4149(01)00128-4〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00748963
Contributeur : Yves Rozenholc <>
Soumis le : mardi 6 novembre 2012 - 13:08:48
Dernière modification le : mardi 10 octobre 2017 - 11:22:03
Document(s) archivé(s) le : jeudi 7 février 2013 - 03:45:33

Fichier

version-finale-SPA2002.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Fabienne Comte, Yves Rozenholc. Adaptive estimation of mean and volatility functions in (auto)-regressive models. Stochastic Processes and their Applications, Elsevier, 2002, 97 (1), pp.111-145. 〈10.1016/S0304-4149(01)00128-4〉. 〈hal-00748963〉

Partager

Métriques

Consultations de la notice

268

Téléchargements de fichiers

62