Origin of the 3.6V to 3.9V voltage increase in the LiFeSO4F cathodes for Li-Ion Batteries - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Energy & Environmental Science Année : 2012

Origin of the 3.6V to 3.9V voltage increase in the LiFeSO4F cathodes for Li-Ion Batteries

Résumé

Recently, the LiFeSO4F material has been reported as the highest potential Fe-based cathode material for Li-Ion batteries. Its working voltage vs. Li+/Li0 jumps from 3.6 V to 3.9 V when LiFeSO4F is synthesized in the fully ordered tavorite structure and in the fully disordered triplite structure, respectively. The present study aims at rationalizing this voltage increase by means of DFT+U calculations combined with crystallographic and electrostatic analyses. We show that the triplite polymorph, although characterized by two distinct edge-shared crystallographic sites, locally exhibits corner-sharing connections between consecutive FeO4F2 octahedra, exactly as in the tavorite polymorph. As a consequence, edge-sharing connections exist in the lithiated triplite structure between consecutive FeO4F2 and LiO4F2 polyhedra. We then demonstrate that the origin of the voltage increase lies in the difference in the anionic networks of the two polymorphs, and more specifically in the electrostatic repulsions induced by the configuration of the fluorine atoms around the transition metal in the two polymorphs (trans- vs. cis-configuration in tavorite vs. triplite). Such a finding should help in the design of novel high potential fluorosulphate materials, which beyond enhanced performances present sustainability attributes as they can be made from abundant elements and via low temperature eco-efficient process.
Fichier non déposé

Dates et versions

hal-00734995 , version 1 (25-09-2012)

Identifiants

Citer

Mouna Ben Yahia, Frédéric Lemoigno, Gwenaëlle Rousse, Florent Boucher, Jean‐marie Tarascon, et al.. Origin of the 3.6V to 3.9V voltage increase in the LiFeSO4F cathodes for Li-Ion Batteries. Energy & Environmental Science, 2012, 5, pp.9584-9594. ⟨10.1039/C2EE22699E⟩. ⟨hal-00734995⟩
325 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More