Flute-like musical instruments: a toy model investigated through numerical continuation

Soizic Terrien 1 Christophe Vergez 1 Benoît Fabre 2
1 Sons
LMA - Laboratoire de Mécanique et d'Acoustique [Marseille]
Abstract : Self-sustained musical instruments (bowed string, woodwind and brass instruments) can be modeled by nonlinear lumped dynamical systems. Among these instruments, flutes and flue organ pipes present the particularity to be modeled as a delay dynamical system. In this paper, such a system, a toy model of flute-like instruments, is studied using numerical continuation. Equilibrium and periodic solutions are explored with respect to the blowing pressure, with focus on amplitude and frequency evolutions along the different solution branches, as well as "jumps" between periodic solution branches. The influence of a second model parameter (namely the inharmonicity) on the behaviour of the system is addressed. It is shown that harmonicity plays a key role in the presence of hysteresis or quasi-periodic regime. Throughout the paper, experimental results on a real instrument are presented to illustrate various phenomena, and allow some qualitative comparisons with numerical results.
Type de document :
Article dans une revue
Journal of Sound and Vibration, Elsevier, 2013, 332 (15), pp.3833-3848. <10.1016/j.jsv.2013.01.041>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00721873
Contributeur : Soizic Terrien <>
Soumis le : mercredi 6 février 2013 - 14:41:25
Dernière modification le : vendredi 6 mai 2016 - 01:06:05
Document(s) archivé(s) le : mardi 7 mai 2013 - 04:30:32

Fichiers

toymodel_JSV_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Citation

Soizic Terrien, Christophe Vergez, Benoît Fabre. Flute-like musical instruments: a toy model investigated through numerical continuation. Journal of Sound and Vibration, Elsevier, 2013, 332 (15), pp.3833-3848. <10.1016/j.jsv.2013.01.041>. <hal-00721873v2>

Partager

Métriques

Consultations de
la notice

405

Téléchargements du document

351