A novel 1-gram insect based device measuring visual motion along 5 optical directions

Abstract : Autopilots for micro aerial vehicles (MAVs) with a maximum permissible avionic payload of only a few grams need lightweight, low-power sensors to be able to navigate safely when flying through unknown environments. To meet these demanding specifications, we developed a simple functional model for an Elementary Motion Detector (EMD) circuit based on the common housefly's visual system. During the last two decades, several insect-based visual motion sensors have been designed and implemented on various robots, and considerable improvements have been made in terms of their mass, size and power consumption. The new lightweight visual motion sensor presented here generates 5 simultaneous neighboring measurements of the 1-D angular speed of a natural scene within a measurement range of more than one decade [25 °/s; 350°/s]. Using a new sensory fusion method consisting in computing the median value of the 5 local motion units, we ended up with a more robust, more accurate and more frequently refreshed measurement of the 1-D angular speed.

Contributeur : Frédéric Roubieu <>
Soumis le : mardi 10 juillet 2012 - 21:35:30
Dernière modification le : lundi 21 mars 2016 - 17:36:55
Document(s) archivé(s) le : jeudi 15 décembre 2016 - 22:13:27


Fichiers produits par l'(les) auteur(s)




Frédéric L. Roubieu, Fabien Expert, Marc Boyron, Benoît-Jérémy Fuschlock, Stéphane Viollet, et al.. A novel 1-gram insect based device measuring visual motion along 5 optical directions. Sensors, 2011 IEEE, Oct 2011, Limerick, Ireland. pp.687, 2012, <10.1109/ICSENS.2011.6127157>. <hal-00716606>



Consultations de
la notice


Téléchargements du document