On the equivariant cohomology of Hilbert schemes of points in the plane

Abstract : Let $S$ be the affine plane regarded as a toric variety with an action of the 2-dimensional torus $T$. We study the equivariant Chow ring $A_{K}^*(Hilb^n(S))$ of the punctual Hilbert scheme $Hilb^n(S)$ with equivariant coefficients inverted. We compute base change formulas in $A_{K}^*(Hilb^n(S))$ between the natural bases introduced by Nakajima, Ellingsrud and Str{\o}mme, and the classical basis associated with the fixed points. We compute the equivariant commutation relations between creation/annihilation operators. We express the class of the small diagonal in $Hilb^n(S)$ in terms of the equivariant Chern classes of the tautological bundle. We prove that the nested Hilbert scheme $Hilb^[n,n+1](S)$ parametrizing nested punctual subschemes of degree $n$ and $n+1$ is irreducible.
Type de document :
Article dans une revue
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2015, 65 (3), pp.1201--1250
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00713204
Contributeur : Laurent Evain <>
Soumis le : vendredi 29 juin 2012 - 15:26:59
Dernière modification le : lundi 24 septembre 2018 - 09:02:01

Lien texte intégral

Identifiants

  • HAL Id : hal-00713204, version 1
  • ARXIV : 1205.5470

Collections

Citation

Pierre-Emmanuel Chaput, Laurent Evain. On the equivariant cohomology of Hilbert schemes of points in the plane. Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2015, 65 (3), pp.1201--1250. 〈hal-00713204〉

Partager

Métriques

Consultations de la notice

202