HOW MANY BINS SHOULD BE PUT IN A REGULAR HISTOGRAM

Abstract : Given an n-sample from some unknown density f on [0,1], it is easy to construct an histogram of the data based on some given partition of [0,1], but not so much is known about an optimal choice of the partition, especially when the data set is not large, even if one restricts to partitions into intervals of equal length. Existing methods are either rules of thumbs or based on asymptotic considerations and often involve some smoothness properties of f. Our purpose in this paper is to give an automatic, easy to program and efficient method to choose the number of bins of the partition from the data. It is based on bounds on the risk of penalized maximum likelihood estimators due to Castellan and heavy simulations which allowed us to optimize the form of the penalty function. These simulations show that the method works quite well for sample sizes as small as 25.
Complete list of metadatas

Cited literature [6 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00712349
Contributor : Yves Rozenholc <>
Submitted on : Wednesday, June 27, 2012 - 1:01:32 AM
Last modification on : Friday, September 20, 2019 - 4:34:02 PM
Long-term archiving on: Friday, September 28, 2012 - 2:21:11 AM

File

histo-birge-rozenholc.pdf
Files produced by the author(s)

Identifiers

Citation

Lucien Birgé, Yves Rozenholc. HOW MANY BINS SHOULD BE PUT IN A REGULAR HISTOGRAM. ESAIM: Probability and Statistics, EDP Sciences, 2006, 10, pp.24-45. ⟨10.1051/ps:2006001⟩. ⟨hal-00712349⟩

Share

Metrics

Record views

420

Files downloads

1367