HOW MANY BINS SHOULD BE PUT IN A REGULAR HISTOGRAM

Abstract : Given an n-sample from some unknown density f on [0,1], it is easy to construct an histogram of the data based on some given partition of [0,1], but not so much is known about an optimal choice of the partition, especially when the data set is not large, even if one restricts to partitions into intervals of equal length. Existing methods are either rules of thumbs or based on asymptotic considerations and often involve some smoothness properties of f. Our purpose in this paper is to give an automatic, easy to program and efficient method to choose the number of bins of the partition from the data. It is based on bounds on the risk of penalized maximum likelihood estimators due to Castellan and heavy simulations which allowed us to optimize the form of the penalty function. These simulations show that the method works quite well for sample sizes as small as 25.
Type de document :
Article dans une revue
ESAIM: Probability and Statistics, EDP Sciences, 2006, 10, pp.24-45. 〈10.1051/ps:2006001〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00712349
Contributeur : Yves Rozenholc <>
Soumis le : mercredi 27 juin 2012 - 01:01:32
Dernière modification le : mardi 10 octobre 2017 - 11:22:03
Document(s) archivé(s) le : vendredi 28 septembre 2012 - 02:21:11

Fichier

histo-birge-rozenholc.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Lucien Birgé, Yves Rozenholc. HOW MANY BINS SHOULD BE PUT IN A REGULAR HISTOGRAM. ESAIM: Probability and Statistics, EDP Sciences, 2006, 10, pp.24-45. 〈10.1051/ps:2006001〉. 〈hal-00712349〉

Partager

Métriques

Consultations de la notice

237

Téléchargements de fichiers

180