On Zermelo-like problems: a Gauss-Bonnet inequality and an E. Hopf theorem

Abstract : The goal of this paper is to describe Zermelo's navigation problem on Riemannian manifolds as a time-optimal control problem and give an efficient method in order to evaluate its control curvature. We will show that up to changing the Riemannian metric on the manifold the control curvature of Zermelo's problem has a simple to handle expression which naturally leads to a generalization of the classical Gauss-Bonnet formula in an inequality. This Gauss-Bonnet inequality enables to generalize to Zermelo's problems a theorem by E. Hopf establishing the flatness of Riemannian tori without conjugate points.
Type de document :
Article dans une revue
Journal of Dynamical and Control Systems, Springer Verlag, 2009, 15 (1), http://dx.doi.org/10.1007/s10883-008-9056-6. 〈10.1007/s10883-008-9056-6〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00705931
Contributeur : Ulysse Serres <>
Soumis le : vendredi 8 juin 2012 - 15:12:17
Dernière modification le : lundi 4 mars 2019 - 13:24:07
Document(s) archivé(s) le : dimanche 9 septembre 2012 - 04:45:07

Fichiers

co-Zer.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Ulysse Serres. On Zermelo-like problems: a Gauss-Bonnet inequality and an E. Hopf theorem. Journal of Dynamical and Control Systems, Springer Verlag, 2009, 15 (1), http://dx.doi.org/10.1007/s10883-008-9056-6. 〈10.1007/s10883-008-9056-6〉. 〈hal-00705931〉

Partager

Métriques

Consultations de la notice

139

Téléchargements de fichiers

163