Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography

Abstract : We consider a general Kaluza-Klein reduction of a truncated Lovelock theory. We find necessary geometric conditions for the reduction to be consistent. The resulting lower-dimensional theory is a higher derivative scalar-tensor theory, depends on a single real parameter and yields second-order field equations. Due to the presence of higher-derivative terms, the theory has multiple applications in modifications of Einstein gravity (Galileon/Horndesky theory) and holography (Einstein-Maxwell-Dilaton theories). We find and analyze charged black hole solutions with planar or curved horizons, both in the 'Einstein' and 'Galileon' frame, with or without cosmological constant. Naked singularities are dressed by a geometric event horizon originating from the higher-derivative terms. The near-extremal geometries of the near-horizon region are either scale invariant or violate hyperscaling. For negative cosmological constant and planar horizons, thermodynamics and first-order hydrodynamics are derived: the shear viscosity to entropy density ratio does not depend on temperature, as expected from the higher-dimensional scale invariance.
Type de document :
Article dans une revue
Journal of High Energy Physics, Springer, 2012, 09, pp.11. <10.1007/JHEP09(2012)011>


https://hal.archives-ouvertes.fr/hal-00705788
Contributeur : Blaise Goutéraux <>
Soumis le : vendredi 8 juin 2012 - 11:43:51
Dernière modification le : mardi 11 octobre 2016 - 14:55:45

Identifiants

Collections

Citation

C. Charmousis, B. Goutéraux, E. Kiritsis. Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography. Journal of High Energy Physics, Springer, 2012, 09, pp.11. <10.1007/JHEP09(2012)011>. <hal-00705788>

Exporter

Partager

Métriques

Consultations de la notice

233