Coupling techniques for nonlinear hyperbolic equations. IV. Well-balanced schemes for scalar multi-dimensional and multi-component laws

Abstract : This series of papers is devoted to the formulation and the approximation of coupling problems for nonlinear hyperbolic equations. The coupling across an interface in the physical space is formulated in term of an augmented system of partial differential equations. In an earlier work, this strategy allowed us to develop a regularization method based on a thick interface model in one space variable for coupling scalar equations. In the present paper, we significantly extend this framework and, in addition, encompass equations in several space variables. This new formulation includes the coupling of several distinct scalar conservation laws and allows for a possible covering in space. Our main contributions are, on one hand, the design and analysis of a well–balanced finite volume method on general triangulations and, on the other hand, a proof of convergence of this method toward entropy solutions, extending Coquel, Cockburn, and LeFloch's theory (restricted to a single conservation law without coupling). The core of our analysis is, first, the derivation of entropy inequalities as well as a discrete entropy dissipation estimate and, second, a proof of convergence toward the entropy solution of the coupling problem.
Type de document :
Article dans une revue
Mathematics of Computation / Mathematics of Computation, American Mathematical Society, 2015, 84, pp.1663-1702. 〈10.1090/S0025-5718-2015-02933-0 〉
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00703885
Contributeur : Benjamin Boutin <>
Soumis le : mardi 28 avril 2015 - 08:24:59
Dernière modification le : jeudi 21 mars 2019 - 14:29:54
Document(s) archivé(s) le : mercredi 19 avril 2017 - 06:21:39

Fichier

BCL-Part4-revised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Benjamin Boutin, Frédéric Coquel, Philippe G. Lefloch. Coupling techniques for nonlinear hyperbolic equations. IV. Well-balanced schemes for scalar multi-dimensional and multi-component laws. Mathematics of Computation / Mathematics of Computation, American Mathematical Society, 2015, 84, pp.1663-1702. 〈10.1090/S0025-5718-2015-02933-0 〉. 〈hal-00703885〉

Partager

Métriques

Consultations de la notice

510

Téléchargements de fichiers

161