Semigroup approach to conservation laws with discontinuous flux

Abstract : The model one-dimensional conservation law with discontinuous spatially heterogeneous flux is $$ u_t + \mathfrak{f}(x,u)_x=0, \quad \mathfrak {f}(x,\cdot)= f^l(x,\cdot)\char_{x<0}\!+f^r(x,\cdot)\char_{x>0}. \eqno (\text{EvPb}) $$ We prove well-posedness for the Cauchy problem for (\text{EvPb}) in the framework of solutions satisfying the so-called adapted entropy inequalities. Exploiting the notion of integral solution that comes from the nonlinear semigroup theory, we propose a way to circumvent the use of strong interface traces for the evolution problem $(\text{EvPb})$ (in fact, proving existence of such traces for the case of $x$-dependent $f^{l,r}$ would be a delicate technical issue). The difficulty is shifted to the study of the associated one-dimensional stationary problem $ u + \mathfrak{f}(x,u)_x=g$, where existence of strong interface traces of entropy solutions is an easy fact. We give a direct proof of this fact, avoiding the subtle arguments of kinetic formulation \cite{KwonVasseur} or of the $H$-measure approach \cite{Panov-trace}.
Type de document :
Chapitre d'ouvrage
G.-Q. Chen, H. Holden and K.H. Karlsen. Springer Proceedings in Mathematics & Statistics Vol.49, 49, Springer, pp. 1-22, 2013, Hyperbolic Conservation Laws and Related Analysis with Applications, 978-3-642-39006-7. 〈10.1007/978-3-642-39007-4_1〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00698581
Contributeur : Boris Andreianov <>
Soumis le : mardi 16 octobre 2012 - 20:26:18
Dernière modification le : vendredi 6 juillet 2018 - 15:18:04
Document(s) archivé(s) le : jeudi 17 janvier 2013 - 11:51:11

Fichier

Semigr-DiscontFlux-Note2012.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

Collections

Citation

Boris Andreianov. Semigroup approach to conservation laws with discontinuous flux. G.-Q. Chen, H. Holden and K.H. Karlsen. Springer Proceedings in Mathematics & Statistics Vol.49, 49, Springer, pp. 1-22, 2013, Hyperbolic Conservation Laws and Related Analysis with Applications, 978-3-642-39006-7. 〈10.1007/978-3-642-39007-4_1〉. 〈hal-00698581v2〉

Partager

Métriques

Consultations de la notice

366

Téléchargements de fichiers

134