Skip to Main content Skip to Navigation
Journal articles

On weak$^*$-convergence in $H^1_L(\mathbb R^d)$

Abstract : Let $L= -\Delta+ V$ be a Schrödinger operator on $\mathbb R^d$, $d\geq 3$, where $V$ is a nonnegative function, $V\ne 0$, and belongs to the reverse Hölder class $RH_{d/2}$. In this paper, we prove a version of the classical theorem of Jones and Journé on weak$^*$-convergence in the Hardy space $H^1_L(\mathbb R^d)$.
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00696432
Contributor : Luong Dang Ky <>
Submitted on : Friday, May 11, 2012 - 4:32:17 PM
Last modification on : Thursday, May 3, 2018 - 3:32:06 PM
Document(s) archivé(s) le : Sunday, August 12, 2012 - 2:38:06 AM

Files

weak-star_convergence.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00696432, version 1

Collections

Citation

Luong Dang Ky. On weak$^*$-convergence in $H^1_L(\mathbb R^d)$. Potential Analysis, Springer Verlag, 2013, 14 p. ⟨hal-00696432⟩

Share

Metrics

Record views

192

Files downloads

453