Skip to Main content Skip to Navigation
Journal articles

Minimization of a quasi-linear Ginzburg-Landau type energy

Abstract : Let G be a smooth bounded domain in R(2). Consider the functional E(epsilon) (u) = 1/2 integral(G) (p(0) + t |x|(k) |u|(t)) |del u|(2) + 1/4 epsilon(2) integral(G) (1-|u|(2))(2) on the set H(g)(1) (G, C) = {u is an element of H(1)(G, C): u = g on partial derivative G} where g is a given boundary data with degree d >= 0. In this paper we will study the behavior of minimizers u(epsilon) of E(epsilon) and we will estimate the energy E(epsilon) (u(epsilon)). (C) 2008 Elsevier Ltd. All rights reserved.
Document type :
Journal articles
Complete list of metadata
Contributor : Admin Lama Connect in order to contact the contributor
Submitted on : Tuesday, May 1, 2012 - 9:39:46 PM
Last modification on : Thursday, September 29, 2022 - 2:21:15 PM

Links full text



Rejeb Hadiji, Carmen Perugia. Minimization of a quasi-linear Ginzburg-Landau type energy. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2009, 71 (3-4), pp.860--875. ⟨10.1016/⟩. ⟨hal-00693127⟩



Record views