Special solutions to a compact equation for deep-water gravity waves

Abstract : Recently, Dyachenko & Zakharov (2011) have derived a compact form of the well known Zakharov integro-differential equation for the third order Hamiltonian dynamics of a potential flow of an incompressible, infinitely deep fluid with a free surface. Special traveling wave solutions of this compact equation are numerically constructed using the Petviashvili method. Their stability properties are also investigated. Further, unstable traveling waves with wedge-type singularities, viz. peakons, are numerically discovered. To gain insights into the properties of singular traveling waves, we consider the academic case of a perturbed version of the compact equation, for which analytical peakons with exponential shape are derived. Finally, by means of an accurate Fourier-type spectral scheme it is found that smooth solitary waves appear to collide elastically, suggesting the integrability of the Zakharov equation.
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

Contributeur : Denys Dutykh <>
Soumis le : lundi 10 septembre 2012 - 22:53:51
Dernière modification le : lundi 21 mars 2016 - 11:30:47
Document(s) archivé(s) le : mardi 11 décembre 2012 - 03:43:56


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité 4.0 International License




Francesco Fedele, Denys Dutykh. Special solutions to a compact equation for deep-water gravity waves. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2012, 712, pp.646-660. 〈http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8764936&fulltextType=RA&fileId=S0022112012004478〉. 〈10.1017/jfm.2012.447〉. 〈hal-00687325v3〉



Consultations de
la notice


Téléchargements du document