On growth rate and contact homology

Abstract : It is a conjecture of Colin and Honda that the number of Reeb periodic orbits of universally tight contact structures on hyperbolic manifolds grows exponentially with the period, and they speculate further that the growth rate of contact homology is polynomial on non-hyperbolic geometries. Along the line of the conjecture, for manifolds with a hyperbolic component that fibers on the circle, we prove that there are infinitely many non-isomorphic contact structures for which the number of Reeb periodic orbits of any non-degenerate Reeb vector field grows exponentially. Our result hinges on the exponential growth of contact homology which we derive as well. We also compute contact homology in some non-hyperbolic cases that exhibit polynomial growth, namely those of universally tight contact structures non-transverse to the fibers on a circle bundle.
Type de document :
Pré-publication, Document de travail
2012
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00682399
Contributeur : Anne Vaugon <>
Soumis le : dimanche 25 mars 2012 - 22:00:44
Dernière modification le : jeudi 11 janvier 2018 - 06:12:18
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 17:12:46

Fichiers

growth_rate_vaugon.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00682399, version 1
  • ARXIV : 1203.5589

Citation

Anne Vaugon. On growth rate and contact homology. 2012. 〈hal-00682399v1〉

Partager

Métriques

Consultations de la notice

142

Téléchargements de fichiers

149