On growth rate and contact homology

Abstract : It is a conjecture of Colin and Honda that the number of Reeb periodic orbits of universally tight contact structures on hyperbolic manifolds grows exponentially with the period, and they speculate further that the growth rate of contact homology is polynomial on non-hyperbolic geometries. Along the line of the conjecture, for manifolds with a hyperbolic component that fibers on the circle, we prove that there are infinitely many non-isomorphic contact structures for which the number of Reeb periodic orbits of any non-degenerate Reeb vector field grows exponentially. Our result hinges on the exponential growth of contact homology which we derive as well. We also compute contact homology in some non-hyperbolic cases that exhibit polynomial growth, namely those of universally tight contact structures non-transverse to the fibers on a circle bundle.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Contributeur : Anne Vaugon <>
Soumis le : dimanche 25 mars 2012 - 22:00:44
Dernière modification le : jeudi 21 juin 2018 - 17:14:02
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 17:12:46


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00682399, version 1
  • ARXIV : 1203.5589


Anne Vaugon. On growth rate and contact homology. 2012. 〈hal-00682399v1〉



Consultations de la notice


Téléchargements de fichiers