High order asymptotics for the electromagnetic scattering from thin periodic layers : the 3D Maxwell case

Bérangère Delourme 1, *
* Auteur correspondant
1 LAGA
LAGA - Laboratoire Analyse, Géométrie et Applications
Abstract : This work deals with the scattering of electromagnetic waves by a thin periodic layer made of an array of regularly-spaced obstacles. The size of the obstacles and the spacing between two consecutive obstacles are of the same order $\delta$, which is much smaller than the wavelength of the incident wave. We provide a complete description of the asymptotic behavior of the solution with respect to the small parameter $\delta$: we use a method that mixes matched asymptotic expansions and homogenization techniques. We pay particular attention to the construction of the near field terms. Indeed, they satisfy electrostatic problems posed in an infinite 3D strip that require a careful analysis. Error estimates are carried out to justify the accuracy of our expansion
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

https://hal.inria.fr/hal-00682358
Contributeur : Bérangère Delourme <>
Soumis le : vendredi 3 janvier 2014 - 17:32:43
Dernière modification le : mardi 11 octobre 2016 - 14:53:05

Fichier

DelourmeAsymptotique3D.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00682358, version 2

Collections

Citation

Bérangère Delourme. High order asymptotics for the electromagnetic scattering from thin periodic layers : the 3D Maxwell case. 2014. <hal-00682358v2>

Partager

Métriques

Consultations de
la notice

409

Téléchargements du document

116