Fractional order polytopic systems: robust stability and stabilisation

Abstract : This article addresses the problem of robust pseudo state feedback stabilisation of commensurate fractional order polytopic systems (FOS). In the proposed approach, Linear Matrix Inequalities (LMI) formalism is used to check if the pseudo-state matrix eigenvalues belong to the FOS stability domain whatever the value of the uncertain parameters. The article focuses particularly on the case of a fractional order ν such that 0 < ν < 1, as the stability region is non-convex and associated LMI condition is not as straightforward to obtain as in the case 1 < ν < 2. In relation to the quadratic stabilisation problem previously addressed by the authors and that involves a single matrix to prove stability of the closed loop system, additional variables are then introduced to decouple system matrices in the closed loop system stability condition. This decoupling allows using parameter-dependent stability matrices and leads to less conservative results as attested by a numerical example.
Type de document :
Article dans une revue
Advances in Difference Equations, SpringerOpen, 2011, 〈10.1186/1687-1847-2011-35〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00676079
Contributeur : Jocelyn Sabatier <>
Soumis le : vendredi 2 mars 2012 - 22:28:37
Dernière modification le : jeudi 11 janvier 2018 - 06:21:08
Document(s) archivé(s) le : mercredi 14 décembre 2016 - 09:43:56

Fichier

1687-1847-2011-35.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Christophe Farges, Jocelyn Sabatier, Mathieu Moze. Fractional order polytopic systems: robust stability and stabilisation. Advances in Difference Equations, SpringerOpen, 2011, 〈10.1186/1687-1847-2011-35〉. 〈hal-00676079〉

Partager

Métriques

Consultations de la notice

195

Téléchargements de fichiers

390