A multiscale multitemporal land cover classification method using a Bayesian approach

Abstract : As vegetation time evolution is one of the most relevant information to discriminate the different land cover types, land cover classification requires both temporal and spatial information. Due to the physical properties of remote sensors, this temporal information can only be derived from coarse resolution sensors such as MERIS (300 × 300 m² pixel size) or SPOT/VGT (1 km² pixel size). In this paper, we propose to use jointly high and coarse spatial resolution to perform an efficient high resolution land cover classification. The method is based on Bayesian theory and on the linear mixture model permitting, through a simulated annealing algorithm, to perform a high resolution classification from a coarse resolution time series.
Type de document :
Communication dans un congrès
SPIE Image and Signal Processing for Remote Sensing XI, 2005, Belgium. 5982, pp.598204.1-598204.12, 2005, <10.1117/12.627604>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00674151
Contributeur : Lionel Moisan <>
Soumis le : samedi 25 février 2012 - 13:22:35
Dernière modification le : mercredi 4 janvier 2017 - 16:23:33

Identifiants

Collections

Citation

Amandine Robin, Sylvie Le Hégarat-Mascle, Lionel Moisan. A multiscale multitemporal land cover classification method using a Bayesian approach. SPIE Image and Signal Processing for Remote Sensing XI, 2005, Belgium. 5982, pp.598204.1-598204.12, 2005, <10.1117/12.627604>. <hal-00674151>

Partager

Métriques

Consultations de la notice

42