Proximal Splitting Derivatives for Risk Estimation

Abstract : This paper develops a novel framework to compute a projected Generalized Stein Unbiased Risk Estimator (GSURE) for a wide class of sparsely regularized solutions of inverse problems. This class includes arbitrary convex data fidelities with both analysis and synthesis mixed L1-L2 norms. The GSURE necessitates to compute the (weak) derivative of a solution w.r.t.~the observations. However, as the solution is not available in analytical form but rather through iterative schemes such as proximal splitting, we propose to iteratively compute the GSURE by differentiating the sequence of iterates. This provides us with a sequence of differential mappings, which, hopefully, converge to the desired derivative and allows to compute the GSURE. We illustrate this approach on total variation regularization with Gaussian noise and to sparse regularization with poisson noise, to automatically select the regularization parameter.
Type de document :
Communication dans un congrès
NCMIP'12, Apr 2012, France. 386, pp.012003, 2012, <10.1088/1742-6596/386/1/012003>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00670213
Contributeur : Gabriel Peyré <>
Soumis le : mardi 14 février 2012 - 21:05:08
Dernière modification le : mercredi 28 septembre 2016 - 16:14:49
Document(s) archivé(s) le : jeudi 22 novembre 2012 - 12:40:34

Fichier

sure-automatic-ncmip12-Long.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Charles Deledalle, Samuel Vaiter, Gabriel Peyré, Jalal M. Fadili, Charles Dossal. Proximal Splitting Derivatives for Risk Estimation. NCMIP'12, Apr 2012, France. 386, pp.012003, 2012, <10.1088/1742-6596/386/1/012003>. <hal-00670213>

Partager

Métriques

Consultations de
la notice

460

Téléchargements du document

254