Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Structural and Molecular Biology Année : 2011

Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state.

Résumé

The core mechanism of intracellular vesicle fusion consists of SNAREpin zippering between vesicular and target membranes. Recent studies indicate that the same SNARE-binding protein, complexin (CPX), can act either as a facilitator or as an inhibitor of membrane fusion, constituting a controversial dilemma. Here we take energetic measurements with the surface force apparatus that reveal that CPX acts sequentially on assembling SNAREpins, first facilitating zippering by nearly doubling the distance at which v- and t-SNAREs can engage and then clamping them into a half-zippered fusion-incompetent state. Specifically, we find that the central helix of CPX allows SNAREs to form this intermediate energetic state at 9-15 nm but not when the bilayers are closer than 9 nm. Stabilizing the activated-clamped state at separations of less than 9 nm requires the accessory helix of CPX, which prevents membrane-proximal assembly of SNAREpins.

Dates et versions

hal-00666159 , version 1 (03-02-2012)

Identifiants

Citer

Feng Li, Frédéric Pincet, Eric Perez, Claudio G Giraudo, David Tareste, et al.. Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state.. Nature Structural and Molecular Biology, 2011, 18 (8), pp.941-6. ⟨10.1038/nsmb.2102⟩. ⟨hal-00666159⟩
108 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More