Skip to Main content Skip to Navigation
Conference papers

Influence de l'estimation des paramètres de texture pour la classification de données complexes

Anthony Fiche 1 Jean-Christophe Cexus 1 Arnaud Martin 2 Ali Khenchaf 1
2 CORDIAL - Human-machine spoken dialogue
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, INRIA Rennes, ENSSAT - École Nationale Supérieure des Sciences Appliquées et de Technologie
Abstract : This paper shows a classification of data based on the theory of belief functions. The complexity of this problem can be seen as two ways. Firstly, data can be imprecise and/or uncertain. Then, it is difficult to choose the right model to represent data. Gaussian model is often used but is limited when data are complex. This model is a particular case of α-stable distributions. Classification is divided into two steps. Learning step allows to modelize data by a mixture of α-stable distributions and Gaussian distributions. Test step allows to classify data with the theory of belief functions and compare the two models. The classification is realized firstly on generated data and then on real data type sonar images.
Complete list of metadatas

Cited literature [15 references]  Display  Hide  Download
Contributor : Arnaud Martin <>
Submitted on : Friday, January 6, 2012 - 5:32:45 PM
Last modification on : Saturday, July 11, 2020 - 3:14:20 AM
Long-term archiving on: : Saturday, April 7, 2012 - 3:05:23 AM


Files produced by the author(s)


  • HAL Id : hal-00657521, version 1


Anthony Fiche, Jean-Christophe Cexus, Arnaud Martin, Ali Khenchaf. Influence de l'estimation des paramètres de texture pour la classification de données complexes. Extraction et Gestion des Connaissances, Jan 2011, Brest, France. pp.10h. ⟨hal-00657521⟩



Record views


Files downloads