Skip to Main content Skip to Navigation
Journal articles

Time-harmonic Maxwell equations in biological cells. The differential form formalism to treat the thin layer

Marc Duruflé 1, 2 Victor Péron 1, 3 Clair Poignard 4, 1
2 BACCHUS - Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems
Inria Bordeaux - Sud-Ouest, UB - Université de Bordeaux, CNRS - Centre National de la Recherche Scientifique : UMR5800
3 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
4 MC2 - Modélisation, contrôle et calcul
Inria Bordeaux - Sud-Ouest, UB - Université de Bordeaux, CNRS - Centre National de la Recherche Scientifique : UMR5251
Abstract : We study the behavior of the electromagnetic field in a biological cell modelled by a medium surrounded by a thin layer and embedded in an ambient medium. We derive approximate transmission conditions in order to replace the membrane by these conditions on the boundary of the interior domain. Our approach is essentially geometric and based on a suitable change of variables in the thin layer. Few notions of differential calculus are given in order to obtain the first order conditions in a simple way, and numerical simulations validate the theoretical results. Asymptotic transmission conditions at any order are given in the last section of the paper.
Complete list of metadatas

Cited literature [39 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00651510
Contributor : Marc Duruflé <>
Submitted on : Tuesday, December 13, 2011 - 6:05:09 PM
Last modification on : Thursday, March 5, 2020 - 7:22:57 PM
Document(s) archivé(s) le : Friday, November 16, 2012 - 3:26:16 PM

File

CM-Michelle.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Marc Duruflé, Victor Péron, Clair Poignard. Time-harmonic Maxwell equations in biological cells. The differential form formalism to treat the thin layer. Confluentes Mathematici, Institut Camille Jordan et Unité de Mathématiques Pures et Appliquées, 2011, 3 (2), pp.325-357. ⟨10.1142/S1793744211000345⟩. ⟨hal-00651510⟩

Share

Metrics

Record views

543

Files downloads

454