Additive covariance kernels for high-dimensional Gaussian process modeling

Abstract : Gaussian process models -also called Kriging models- are often used as mathematical approximations of expensive experiments. However, the number of observation required for building an emulator becomes unrealistic when using classical covariance kernels when the dimension of input increases. In oder to get round the curse of dimensionality, a popular approach is to consider simplified models such as additive models. The ambition of the present work is to give an insight into covariance kernels that are well suited for building additive Kriging models and to describe some properties of the resulting models.
Type de document :
Article dans une revue
Annales de la Faculté de Sciences de Toulouse, 2012, Tome 21 (numéro 3), p. 481-499
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00644934
Contributeur : Nicolas Durrande <>
Soumis le : vendredi 25 novembre 2011 - 15:24:46
Dernière modification le : mardi 23 octobre 2018 - 14:36:09
Document(s) archivé(s) le : dimanche 26 février 2012 - 02:31:56

Fichiers

durrande2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00644934, version 1
  • ARXIV : 1111.6233

Citation

Nicolas Durrande, David Ginsbourger, Olivier Roustant. Additive covariance kernels for high-dimensional Gaussian process modeling. Annales de la Faculté de Sciences de Toulouse, 2012, Tome 21 (numéro 3), p. 481-499. 〈hal-00644934〉

Partager

Métriques

Consultations de la notice

486

Téléchargements de fichiers

698