Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions

Abstract : We design a numerical scheme for solving the Multi step-forward Dynamic Programming (MDP) equation arising from the time-discretization of backward stochastic differential equations. The generator is assumed to be locally Lipschitz, which includes some cases of quadratic drivers. When the large sequence of conditional expectations is computed using empirical least-squares regressions, under general conditions we establish an upper bound error as the average, rather than the sum, of local regression errors only, suggesting that our error estimation is tight. Despite the nested regression problems, the interdependency errors are justified to be at most of the order of the statistical regression errors (up to logarithmic factor). Finally, we optimize the algorithm parameters, depending on the dimension and on the smoothness of value functions, in the limit as the time mesh size goes to zero and compute the complexity needed to achieve a given accuracy. Numerical experiments are presented illustrating theoretical convergence estimates.
Type de document :
Rapport
2014
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00642685
Contributeur : Emmanuel Gobet <>
Soumis le : mardi 25 mars 2014 - 13:55:24
Dernière modification le : jeudi 9 février 2017 - 15:15:49
Document(s) archivé(s) le : mercredi 25 juin 2014 - 12:05:21

Fichier

LSMDP_final_revision_submitted...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00642685, version 4

Collections

Citation

Emmanuel Gobet, Plamen Turkedjiev. Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions. 2014. 〈hal-00642685v4〉

Partager

Métriques

Consultations de la notice

789

Téléchargements de fichiers

495