A sharp analysis on the asymptotic behavior of the Durbin-Watson statistic for the first-order autoregressive process

Bernard Bercu 1, 2 Frédéric Proia 1, 2
2 ALEA - Advanced Learning Evolutionary Algorithms
Inria Bordeaux - Sud-Ouest, UB - Université de Bordeaux, CNRS - Centre National de la Recherche Scientifique : UMR5251
Abstract : The purpose of this paper is to provide a sharp analysis on the asymptotic behavior of the Durbin-Watson statistic. We focus our attention on the first-order autoregressive process where the driven noise is also given by a first-order autoregressive process. We establish the almost sure convergence and the asymptotic normality for both the least squares estimator of the unknown parameter of the autoregressive process as well as for the serial correlation estimator associated to the driven noise. In addition, the almost sure rates of convergence of our estimates are also provided. It allows us to establish the almost sure convergence and the asymptotic normality for the Durbin-Watson statistic. Finally, we propose a new bilateral statistical test for residual autocorrelation.
Type de document :
Article dans une revue
ESAIM: Probability and Statistics, EDP Sciences, 2013, 17, pp.500-530. <10.1051/ps/2012005>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00642634
Contributeur : Bernard Bercu <>
Soumis le : samedi 19 novembre 2011 - 12:16:29
Dernière modification le : vendredi 11 septembre 2015 - 01:07:03
Document(s) archivé(s) le : vendredi 16 novembre 2012 - 11:30:30

Fichier

BPDW2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Bernard Bercu, Frédéric Proia. A sharp analysis on the asymptotic behavior of the Durbin-Watson statistic for the first-order autoregressive process. ESAIM: Probability and Statistics, EDP Sciences, 2013, 17, pp.500-530. <10.1051/ps/2012005>. <hal-00642634>

Partager

Métriques

Consultations de
la notice

303

Téléchargements du document

131