Local Optima Networks with Escape Edges

Abstract : This paper proposes an alternative definition of edges (escape edges) for the recently introduced network-based model of combinatorial landscapes: Local Optima Networks (LON). The model compresses the information given by the whole search space into a smaller mathematical object that is the graph having as vertices the local optima and as edges the possible weighted transitions between them. The original definition of edges accounted for the notion of transitions between the basins of attraction of local optima. This definition, although informative, produced densely connected networks and required the exhaustive sampling of the basins of attraction. The alternative escape edges proposed here do not require a full computation of the basins. Instead, they account for the chances of escaping a local optima after a controlled mutation (e.g. 1 or 2 bit-flips) followed by hill-climbing. A statistical analysis comparing the two LON models for a set of NK landscapes, is presented and discussed. Moreover, a preliminary study is presented, which aims at validating the LON models as a tool for analyzing the dynamics of stochastic local search in combinatorial optimization.
Type de document :
Communication dans un congrès
International Conference on Artificial Evolution (EA-2011), Oct 2011, Angers, France. pp.10 - 23, 2011
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

Contributeur : Sébastien Verel <>
Soumis le : mercredi 9 novembre 2011 - 14:10:14
Dernière modification le : jeudi 21 février 2019 - 10:52:49
Document(s) archivé(s) le : lundi 5 décembre 2016 - 04:36:50


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00639522, version 1


Sébastien Verel, Fabio Daolio, Gabriela Ochoa, Marco Tomassini. Local Optima Networks with Escape Edges. International Conference on Artificial Evolution (EA-2011), Oct 2011, Angers, France. pp.10 - 23, 2011. 〈hal-00639522〉



Consultations de la notice


Téléchargements de fichiers