A nonlocal one-phase Stefan problem that develops mushy regions

Abstract : We study a nonlocal version of the one-phase Stefan problem which develops mushy regions, even if they were not present initially, a model which can be of interest at the mesoscopic scale. The equation involves a convolution with a compactly supported kernel. The created mushy regions have the size of the support of this kernel. If the kernel is suitably rescaled, such regions disappear and the solution converges to the solution of the usual local version of the one-phase Stefan problem. We prove that the model is well posed, and give several qualitative properties. In particular, the long-time behavior is identified by means of a nonlocal mesa solving an obstacle problem.
Type de document :
Article dans une revue
SIAM J. Math. Anal., 2012, 44 (4), pp.3071-3100. 〈10.1137/110849365〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00626418
Contributeur : Emmanuel Chasseigne <>
Soumis le : lundi 26 septembre 2011 - 10:58:58
Dernière modification le : jeudi 7 février 2019 - 15:46:23
Document(s) archivé(s) le : mardi 27 décembre 2011 - 02:22:03

Fichiers

StefanNoLocal_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Cristina Brändle, Emmanuel Chasseigne, Fernando Quirós. A nonlocal one-phase Stefan problem that develops mushy regions. SIAM J. Math. Anal., 2012, 44 (4), pp.3071-3100. 〈10.1137/110849365〉. 〈hal-00626418〉

Partager

Métriques

Consultations de la notice

349

Téléchargements de fichiers

123