A new class of $({\cal H}^k,1)$-rectifiable subsets of metric spaces

Abstract : The main motivation of this paper arises from the study of Carnot--Carathéodory spaces, where the class of $1$-rectifiable sets does not contain smooth non-horizontal curves; therefore a new definition of rectifiable sets including non-horizontal curves is needed. This is why we introduce in any metric space a new class of curves, called continuously metric differentiable of degree $k$, which are Hölder but not Lipschitz continuous when $k>1$. Replacing Lipschitz curves by this kind of curves we define $({\cal H}^k,1)$-rectifiable sets and show a density result generalizing the corresponding one in Euclidean geometry. This theorem is a consequence of computations of Hausdorff measures along curves, for which we give an integral formula. In particular, we show that both spherical and usual Hausdorff measures along curves coincide with a class of dimensioned lengths and are related to an interpolation complexity, for which estimates have already been obtained in Carnot--Carathéodory spaces.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Contributeur : Roberta Ghezzi <>
Soumis le : jeudi 24 mai 2012 - 15:23:36
Dernière modification le : mercredi 23 janvier 2019 - 10:29:24
Document(s) archivé(s) le : samedi 25 août 2012 - 02:38:33


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00623647, version 2
  • ARXIV : 1109.3181



Roberta Ghezzi, Frédéric Jean. A new class of $({\cal H}^k,1)$-rectifiable subsets of metric spaces. 2012. 〈hal-00623647v2〉



Consultations de la notice


Téléchargements de fichiers