Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

On the Heisenberg invariance and the Elliptic Poisson tensors

Abstract : We study different algebraic and geometric properties of Heisenberg invariant Poisson polynomial quadratic algebras. We show that these algebras are unimodular. The elliptic Sklyanin-Odesskii-Feigin Poisson algebras $q_{n,k}(\mathcal E)$ are the main important example. We classify all quadratic $H-$invariant Poisson tensors on ${\mathbb C}^n$ with $n\leq 6$ and show that for $n\leq 5$ they coincide with the elliptic Sklyanin-Odesskii-Feigin Poisson algebras or with their certain degenerations.
Complete list of metadata
Contributor : Vladimir Roubtsov <>
Submitted on : Tuesday, September 6, 2011 - 5:05:29 PM
Last modification on : Monday, March 9, 2020 - 6:15:53 PM

Links full text


  • HAL Id : hal-00619673, version 1
  • ARXIV : 1001.4422


G. Ortenzi, V. Rubtsov, S. R. Tagne Pelap. On the Heisenberg invariance and the Elliptic Poisson tensors. 2010. ⟨hal-00619673⟩