A nonlinear Stein based estimator for multichannel image denoising

Abstract : The use of multicomponent images has become widespread with the improvement of multisensor systems having increased spatial and spectral resolutions. However, the observed images are often corrupted by an additive Gaussian noise. In this paper, we are interested in multichannel image denoising based on a multiscale representation of the images. A multivariate statistical approach is adopted to take into account both the spatial and the inter-component correlations existing between the different wavelet subbands. More precisely, we propose a new parametric nonlinear estimator which generalizes many reported denoising methods. The derivation of the optimal parameters is achieved by applying Stein's principle in the multivariate case. Experiments performed on multispectral remote sensing images clearly indicate that our method outperforms conventional wavelet denoising techniques
Type de document :
Article dans une revue
IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2008, 56 (8), pp.3855-3870. <10.1109/TSP.2008.921757>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00617318
Contributeur : Laurent Duval <>
Soumis le : samedi 11 juin 2016 - 18:02:46
Dernière modification le : mardi 28 juin 2016 - 11:51:14

Fichier

Chaux_C_2008_j-ieee-tsp_nonlin...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Caroline Chaux, Laurent Duval, Amel Benazza-Benyahia, Jean-Christophe Pesquet. A nonlinear Stein based estimator for multichannel image denoising. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2008, 56 (8), pp.3855-3870. <10.1109/TSP.2008.921757>. <hal-00617318>

Partager

Métriques

Consultations de
la notice

284

Téléchargements du document

33