On the growth of quotients of Kleinian groups

Abstract : We study the growth and divergence of quotients of Kleinian groups G (i.e. discrete, torsionless groups of isometries of a Cartan-Hadamard manifold with pinched negative curvature). Namely, we give general criteria ensuring the divergence of a quotient group (G) over bar of G and the 'critical gap property' delta((G) over bar) < delta(G). As a corollary, we prove that every geometrically finite Kleinian group satisfying the parabolic gap condition (i.e. delta(P) < delta(G) for every parabolic subgroup P of G) is growth tight. These quotient groups naturally act on non-simply connected quotients of a Cartan-Hadamard manifold, so the classical arguments of Patterson-Sullivan theory are not available here; this forces us to adopt a more elementary approach, yielding as by-product a new elementary proof of the classical results of divergence for geometrically finite groups in the simply connected case. We construct some examples of quotients of Kleinian groups and discuss the optimality of our results.
Type de document :
Article dans une revue
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2011, 31 (3), pp.835-851. 〈10.1017/S0143385710000131〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00601259
Contributeur : Marie-Annick Guillemer <>
Soumis le : vendredi 17 juin 2011 - 11:09:15
Dernière modification le : vendredi 16 novembre 2018 - 01:23:09

Lien texte intégral

Identifiants

Citation

Françoise Dal'Bo, Marc Peigné, Jean-Claude Picaud, Andrea Sambusetti. On the growth of quotients of Kleinian groups. Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2011, 31 (3), pp.835-851. 〈10.1017/S0143385710000131〉. 〈hal-00601259〉

Partager

Métriques

Consultations de la notice

293