Fractional Poisson field on a finite set

Abstract : The fractional Poisson field (fPf) can be interpreted in term of the number of balls falling down on each point of $\R^D$, when the centers and the radii of the balls are thrown at random following a Poisson point process in $\R^D\times \R^+$ with an appropriate intensity measure. It provides a simple description for a non Gaussian random field that has the same covariance function as the fractional Brownian field. In the present paper, we concentrate on the restrictions of the fPf to finite sets of points in $\R^D$. Actually, since it takes discrete values, it seems natural to adapt this field to a discrete context. We are particularly interested in its finite-dimensional distributions, in its representation on a finite grid, and in its discrete variations which yield an estimator for its Hurst index.
Type de document :
Pré-publication, Document de travail
MAP5 2011-19. 2011
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00597722
Contributeur : Hermine Biermé <>
Soumis le : mercredi 1 juin 2011 - 16:52:10
Dernière modification le : mardi 10 octobre 2017 - 11:22:04
Document(s) archivé(s) le : vendredi 9 novembre 2012 - 14:11:13

Fichier

PoissField-preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00597722, version 1

Collections

Citation

Hermine Biermé, Yann Demichel, Anne Estrade. Fractional Poisson field on a finite set. MAP5 2011-19. 2011. 〈hal-00597722〉

Partager

Métriques

Consultations de la notice

257

Téléchargements de fichiers

85