A universality result for the global fluctuations of the eigenvectors of Wigner matrices

Abstract : Let $U_n=[u_{i,j}]$ be the eigenvectors matrix of a Wigner matrix. We prove that under some moments conditions, the bivariate random process indexed by $[0,1]^2$ with value at $(s,t)$ equal to the sum, over $1\le i \le ns$ and $1\le j \le nt$, of $|u_{i,j}|^2 - 1/n$, converges in distribution to the bivariate Brownian bridge. This result has already been proved for GOE and GUE matrices. It is conjectured here that the necessary and sufficient condition, for the result to be true for a general Wigner matrix, is the matching of the moments of orders $1$, $2$ and $4$ of the entries of the Wigner with the ones of a GOE or GUE matrix. Surprisingly, the third moment of the entries of the Wigner matrix has no influence on the limit distribution.
Type de document :
Article dans une revue
Random Matrices: Theory and Applications, 2012, 01 (04), pp.23. <10.1142/S2010326312500116>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00583889
Contributeur : Florent Benaych-Georges <>
Soumis le : vendredi 28 septembre 2012 - 08:54:20
Dernière modification le : mardi 11 octobre 2016 - 13:29:38
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 17:49:38

Fichier

Wigner_eigenvectors_27912.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Florent Benaych-Georges. A universality result for the global fluctuations of the eigenvectors of Wigner matrices. Random Matrices: Theory and Applications, 2012, 01 (04), pp.23. <10.1142/S2010326312500116>. <hal-00583889v6>

Partager

Métriques

Consultations de
la notice

132

Téléchargements du document

68