Prostate Segmentation with Local Binary Patterns Guided Active Appearance Models

Abstract : Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the local- ization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of the prostate reduces computational complexity and improves the multimodal registration accuracy. However, accurate and computationally efficient segmentation of the prostate in TRUS images could be challenging in the presence of heterogeneous intensity distribution inside the prostate gland, and other imaging artifacts like speckle noise, shadow regions and low Signal to Noise Ratio (SNR). In this work, we propose to enhance the texture features of the prostate region using Local Binary Patterns (LBP) for the propagation of a shape and appearance based statistical model to segment the prostate in a multi-resolution framework. A parametric model of the propagating contour is derived from Principal Component Analysis (PCA) of the prior shape and texture information of the prostate from the training data. The estimated parameters are then modified with the prior knowledge of the optimization space to achieve an optimal segmentation. The proposed method achieves a mean Dice Similarity Coefficient (DSC) value of 0.94±0.01 and a mean segmentation time of 0.6±0.02 seconds when validated with 70 TRUS images of 7 datasets in a leave-one-patient-out validation framework. Our method per- forms computationally efficient and accurate prostate segmentation in the presence of intensity heterogeneities and imaging artifacts.
Type de document :
Communication dans un congrès
Benoit M. Dawant, David R. Haynor. Medical imaging : image processing, Feb 2011, France. SPIE, 7962, pp.18, 2011, 〈10.1117/12.877955〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00583151
Contributeur : Fabrice Meriaudeau <>
Soumis le : mardi 5 avril 2011 - 07:31:09
Dernière modification le : mardi 5 avril 2011 - 09:35:30
Document(s) archivé(s) le : mercredi 6 juillet 2011 - 02:36:51

Fichier

SPIE_Soumya.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Soumya Ghose, Arnau Oliver, Robert Marti, Xavier Llado, Jordi Freixenet, et al.. Prostate Segmentation with Local Binary Patterns Guided Active Appearance Models. Benoit M. Dawant, David R. Haynor. Medical imaging : image processing, Feb 2011, France. SPIE, 7962, pp.18, 2011, 〈10.1117/12.877955〉. 〈hal-00583151〉

Partager

Métriques

Consultations de
la notice

255

Téléchargements du document

419