A classifier ensemble based on fusion of support vector machines for classifying hyperspectral data

Abstract : Classification of hyperspectral data using a classifier ensemble that is based on support vector machines (SVMs) are addressed. First, the hyperspectral data set is decomposed into a few data sources according to the similarity of the spectral bands. Then, each source is processed separately by performing classification based on SVM. Finally, all outputs are used as input for final decision fusion performed by an additional SVM classifier. Results of the experiments underline how the proposed SVM fusion ensemble outperforms a standard SVM classifier in terms of overall and class accuracies, the improvement being irrespective of the size of the training sample set. The definition of the data sources resulting from the original data set is also studied.
Type de document :
Article dans une revue
International Journal of Image and Data Fusion, 2010, 1 (4), pp.293-307. 〈10.1080/19479832.2010.485935〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00578897
Contributeur : Jocelyn Chanussot <>
Soumis le : mercredi 13 juillet 2011 - 15:48:03
Dernière modification le : mercredi 19 septembre 2018 - 01:31:05
Document(s) archivé(s) le : lundi 12 novembre 2012 - 10:56:11

Fichier

im_data_fusion_10_ceamanos_cla...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Xavier Ceamanos, Bjorn Waske, Jon Atli Benediktsson, Jocelyn Chanussot, Mathieu Fauvel, et al.. A classifier ensemble based on fusion of support vector machines for classifying hyperspectral data. International Journal of Image and Data Fusion, 2010, 1 (4), pp.293-307. 〈10.1080/19479832.2010.485935〉. 〈hal-00578897〉

Partager

Métriques

Consultations de la notice

531

Téléchargements de fichiers

302