Skip to Main content Skip to Navigation
Journal articles

Raman mapping and numerical simulation of calcium carbonates distribution in experimentally carbonated Portland-cement cores

Abstract : The spatial distribution of CaCO3 polymorphs formed during the experimental carbonation of water saturated Portlandcement cores (30 mm in diameter), with supercritical CO2 at 90 C and 30 MPa, has been investigated using Raman microspectrometry on polished sample sections and X-ray microdiffraction. The three calcium carbonate polymorphs (calcite, aragonite and vaterite) were clearly distinguished using both techniques and their distribution along the main CO2 diffusion direction could be mapped at the millimetre scale using a dynamic line-scanning Raman mapping tool. The calcium carbonate 2D distribution clearly shows that vaterite, the least stable of the three CaCO3 polymorphs, is mostly located in a 500 mm wide ring ahead of the carbonation zone. This feature indicates that vaterite is the first CaCO3 polymorph to crystallize within the cement sample in the course of the carbonation process. The presence of a vaterite front indicates that local mineral–solution equilibration can be slower than species transport, even above ambient conditions, and that kinetics cannot be ignored in the cement carbonation process. By using calcite and vaterite precipitation kinetic data from the literature and assuming water–mineral kinetics based on the Transition State Theory, the vaterite front inferred from Raman mapping is reproduced with a purely diffusive 1D transport code.
Document type :
Journal articles
Complete list of metadata

https://hal-brgm.archives-ouvertes.fr/hal-00563619
Contributor : Marielle Arregros <>
Submitted on : Monday, February 7, 2011 - 9:23:54 AM
Last modification on : Friday, July 2, 2021 - 10:46:03 AM

Identifiers

Citation

Jérôme Corvisier, Fabrice Brunet, Antonin Fabbri, Sylvain Bernard, Nathaniel Findling, et al.. Raman mapping and numerical simulation of calcium carbonates distribution in experimentally carbonated Portland-cement cores. European Journal of Mineralogy, Copernicus, 2010, 22 (1), pp.63-74. ⟨10.1127/0935-1221/2010/0022-1977⟩. ⟨hal-00563619⟩

Share

Metrics

Record views

737