Real-Time Simulation of Biologically Realistic Stochastic Neurons in VLSI

Abstract : Neuronal variability has been thought to play an important role in the brain. As the variability mainly comes from the uncertainty in biophysical mechanisms, stochastic neuron models have been proposed for studying how neurons compute with noise. However, most papers are limited to simulating stochastic neurons in a digital computer. The speed and the efficiency are thus limited especially when a large neuronal network is of concern. This brief explores the feasibility of simulating the stochastic behavior of biological neurons in a very large scale integrated (VLSI) system, which implements a programmable and configurable Hodgkin-Huxley model. By simply injecting noise to the VLSI neuron, various stochastic behaviors observed in biological neurons are reproduced realistically in VLSI. The noise-induced variability is further shown to enhance the signal modulation of a neuron. These results point toward the development of analog VLSI systems for exploring the stochastic behaviors of biological neuronal networks in large scale.
Type de document :
Article dans une revue
IEEE Transactions on Neural Networks, Institute of Electrical and Electronics Engineers, 2010, 21 (9), pp.1511-1517. 〈10.1109/TNN.2010.2049028〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00551652
Contributeur : Chrystel Plumejeau <>
Soumis le : jeudi 13 janvier 2011 - 10:06:08
Dernière modification le : jeudi 11 janvier 2018 - 06:21:07
Document(s) archivé(s) le : samedi 3 décembre 2016 - 02:49:35

Fichier

HAL_Chen_Renaud_TNN-2010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Hsin Chen, Sylvain Saïghi, Laure Buhry, Sylvie Renaud. Real-Time Simulation of Biologically Realistic Stochastic Neurons in VLSI. IEEE Transactions on Neural Networks, Institute of Electrical and Electronics Engineers, 2010, 21 (9), pp.1511-1517. 〈10.1109/TNN.2010.2049028〉. 〈hal-00551652〉

Partager

Métriques

Consultations de la notice

257

Téléchargements de fichiers

329