Local Cuts and Two-Period Convex Hull Closures for Big Bucket Lot-Sizing Problems.

Kerem Akartunali 1 Andrew J. Miller 2, 3
3 Realopt - Reformulations based algorithms for Combinatorial Optimization
LaBRI - Laboratoire Bordelais de Recherche en Informatique, IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : Despite the significant attention that they have drawn over the years, big bucket lot-sizing problems remain notoriously difficult to solve. The authors have previously presented evidence that what make these problems difficult are the embedded single-machine, single-level, multi-period submodels. We therefore consider the simplest such submodel, a multi-item, two-period capacitated model.
Document type :
Conference papers
Complete list of metadatas

Cited literature [3 references]  Display  Hide  Download

Contributor : Andrew J. Miller <>
Submitted on : Friday, December 17, 2010 - 1:51:54 PM
Last modification on : Thursday, January 11, 2018 - 6:22:12 AM
Long-term archiving on : Monday, November 5, 2012 - 2:30:54 PM


Files produced by the author(s)


  • HAL Id : hal-00547807, version 1


Kerem Akartunali, Andrew J. Miller. Local Cuts and Two-Period Convex Hull Closures for Big Bucket Lot-Sizing Problems.. ROADEF 2010: 11e congrès de la Société Française de Recherche Opérationnelle et d'Aide à la Décision, Feb 2010, France. http://spiderman-2.laas.fr/roadef2010/actes/. ⟨hal-00547807⟩



Record views


Files downloads