Stable fluctuations for ballistic random walks in random environment on Z

Abstract : We consider transient random walks in random environment on $\Z$ in the positive speed (ballistic) and critical zero speed regimes. A classical result of Kesten, Kozlov and Spitzer proves that the hitting time of level $n$, after proper centering and normalization, converges to a completely asymmetric stable distribution, but does not describe its scale parameter. Following [7], where the (non-critical) zero speed case was dealt with, we give a new proof of this result in the subdiffusive case that provides a complete description of the limit law. Furthermore, our proof enables us to give a description of the quenched distribution of hitting times. The case of Dirichlet environment turns out to be remarkably explicit.
Type de document :
Pré-publication, Document de travail
This paper completes a former version by adding a quenched analysis of the distribution of hittin.. 2010
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00543709
Contributeur : Laurent Tournier <>
Soumis le : lundi 6 décembre 2010 - 15:29:40
Dernière modification le : samedi 11 novembre 2017 - 01:13:50
Document(s) archivé(s) le : lundi 7 mars 2011 - 03:45:27

Fichiers

stable_fluctu.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00543709, version 1

Citation

Nathanaël Enriquez, Christophe Sabot, Laurent Tournier, Olivier Zindy. Stable fluctuations for ballistic random walks in random environment on Z. This paper completes a former version by adding a quenched analysis of the distribution of hittin.. 2010. 〈hal-00543709〉

Partager

Métriques

Consultations de la notice

177

Téléchargements de fichiers

42