Some inverse problems around the tokamak Tore Supra

Abstract : We consider two inverse problems related to the tokamak \textsl{Tore Supra} through the study of the magnetostatic equation for the poloidal flux. The first one deals with the Cauchy issue of recovering in a two dimensional annular domain boundary magnetic values on the inner boundary, namely the limiter, from available overdetermined data on the outer boundary. Using tools from complex analysis and properties of genereralized Hardy spaces, we establish stability and existence properties. Secondly the inverse problem of recovering the shape of the plasma is addressed thank tools of shape optimization. Again results about existence and optimality are provided. They give rise to a fast algorithm of identification which is applied to several numerical simulations computing good results either for the classical harmonic case or for the data coming from \textsl{Tore Supra}.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Yannick Privat <>
Soumis le : vendredi 6 avril 2012 - 11:18:41
Dernière modification le : jeudi 7 février 2019 - 17:15:40
Archivage à long terme le : mercredi 14 décembre 2016 - 20:36:20


Fichiers produits par l'(les) auteur(s)



Yannick Fischer, Benjamin Marteau, Yannick Privat. Some inverse problems around the tokamak Tore Supra. Communications on Pure and Applied Mathematics, Wiley, 2012, 11 (6), pp.2327-2349. ⟨10.3934/cpaa.2012.11.2327⟩. ⟨hal-00537648v3⟩



Consultations de la notice


Téléchargements de fichiers