An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits.

Nicolas Crouseilles 1, 2 Mohammed Lemou 3
2 CALVI - Scientific computation and visualization
IRMA - Institut de Recherche Mathématique Avancée, LSIIT - Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection, Inria Nancy - Grand Est, IECL - Institut Élie Cartan de Lorraine
Abstract : In this work, we extend the micro-macro decomposition based numerical schemes developed in \cite{benoune} to the collisional Vlasov-Poisson model in the diffusion and high-field asymptotics. In doing so, we first write the Vlasov-Poisson model as a system that couples the macroscopic (equilibrium) part with the remainder part. A suitable discretization of this micro-macro model enables to derive an asymptotic preserving scheme in the diffusion and high-field asymptotics. In addition, two main improvements are presented: On the one hand a self-consistent electric field is introduced, which induces a specific discretization in the velocity direction, and represents a wide range of applications in plasma physics. On the other hand, as suggested in \cite{noteL}, we introduce a suitable reformulation of the micro-macro scheme which leads to an asymptotic preserving property with the following property: It degenerates into an implicit scheme for the diffusion limit model when $\varepsilon\rightarrow 0$, which makes it free from the usual diffusion constraint $\Delta t={\cal O}(\Delta x^2)$ in all regimes. Numerical examples are used to demonstrate the efficiency and the applicability of the schemes for both regimes.
Type de document :
Article dans une revue
Kinetic and Related Models , AIMS, 2011, 4 (2), pp.441-477
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00533327
Contributeur : Nicolas Crouseilles <>
Soumis le : vendredi 5 novembre 2010 - 16:52:17
Dernière modification le : vendredi 16 novembre 2018 - 01:31:23
Document(s) archivé(s) le : jeudi 30 juin 2011 - 13:35:16

Fichier

dec-MM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00533327, version 1

Citation

Nicolas Crouseilles, Mohammed Lemou. An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits.. Kinetic and Related Models , AIMS, 2011, 4 (2), pp.441-477. 〈hal-00533327〉

Partager

Métriques

Consultations de la notice

756

Téléchargements de fichiers

313