On Wiener index of graphs and their line graphs

Abstract : The Wiener index of a graph $G$, denoted by $W(G)$, is the sum of distances between all pairs of vertices in $G$. In this paper, we consider the relation between the Wiener index of a graph, $G$, and its line graph, $L(G)$. We show that if $G$ is of minimum degree at least two, then $W(G) ≤ W(L(G))$. We prove that for every non-negative integer g0, there exists $g > g_0$, such that there are infinitely many graphs $G$ of girth $g$, satisfying $W(G) = W(L(G))$. This partially answers a question raised by Dobrynin and Mel'nikov [8] and encourages us to conjecture that the answer to a stronger form of their question is affirmative.
Type de document :
Article dans une revue
MATCH Communications in Mathematical and in Computer Chemistry, 2010, 64 (3), pp.683-698
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00531288
Contributeur : Nathann Cohen <>
Soumis le : mardi 2 novembre 2010 - 12:20:24
Dernière modification le : mardi 2 novembre 2010 - 13:57:45
Document(s) archivé(s) le : vendredi 2 décembre 2016 - 07:30:58

Fichier

01113.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00531288, version 1

Collections

Citation

Nathann Cohen, Darko Dimitrov, Roi Krakovski, Riste Skrekovski, Vida Vukašinović. On Wiener index of graphs and their line graphs. MATCH Communications in Mathematical and in Computer Chemistry, 2010, 64 (3), pp.683-698. <hal-00531288>

Partager

Métriques

Consultations de
la notice

508

Téléchargements du document

337