Nonparametric regression with martingale increment errors

Abstract : We consider the problem of adaptive estimation of the regression function in a framework where we replace ergodicity assumptions (such as independence or mixing) by another structural assumption on the model. Namely, we propose adaptive upper bounds for kernel estimators with data-driven bandwidth (Lepski's selection rule) in a regression model where the noise is an increment of martingale. It includes, as very particular cases, the usual i.i.d. regression and auto-regressive models. The cornerstone tool for this study is a new result for self-normalized martingales, called ``stability'', which is of independent interest. In a first part, we only use the martingale increment structure of the noise. We give an adaptive upper bound using a random rate, that involves the occupation time near the estimation point. Thanks to this approach, the theoretical study of the statistical procedure is disconnected from usual ergodicity properties like mixing. Then, in a second part, we make a link with the usual minimax theory of deterministic rates. Under a beta-mixing assumption on the covariates process, we prove that the random rate considered in the first part is equivalent, with large probability, to a deterministic rate which is the usual minimax adaptive one.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Stéphane Gaïffas <>
Soumis le : vendredi 29 octobre 2010 - 13:38:09
Dernière modification le : mercredi 12 octobre 2016 - 01:03:01
Document(s) archivé(s) le : dimanche 30 janvier 2011 - 02:53:28


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00530581, version 1
  • ARXIV : 1010.6209



Sylvain Delattre, Stéphane Gaïffas. Nonparametric regression with martingale increment errors. 2010. <hal-00530581>



Consultations de
la notice


Téléchargements du document