Maximum Smoothed Likelihood for Multivariate Mixtures

Abstract : We introduce an algorithm for estimating the parameters in a finite mixture of completely unspecified multivariate components in at least three dimensions under the assumption of conditionally independent coordinate dimensions. We prove that this algorithm, based on a majorization-minimization idea, possesses a desirable descent property just as any EM algorithm does. We discuss the similarities between our algorithm and a related one - the so-called nonlinearly smoothed EM, or NEMS, algorithm for the non-mixture setting. We also demonstrate via simulation studies that the new algorithm gives very similar results to another algorithm that does not satisfy any descent algorithm, thus validating the latter algorithm, which can be simpler to program. We provide code for implementing the new algorithm in a publicly-available R package.
Type de document :
Article dans une revue
Biometrika, Oxford University Press (OUP), 2011, 98 (2), pp.403-416. 〈10.1093/biomet/asq079〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00516391
Contributeur : Didier Chauveau <>
Soumis le : jeudi 9 septembre 2010 - 14:50:18
Dernière modification le : jeudi 3 mai 2018 - 15:32:06
Document(s) archivé(s) le : mardi 23 octobre 2012 - 15:46:41

Fichier

msl_08_2010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Michael Levine, David Hunter, Didier Chauveau. Maximum Smoothed Likelihood for Multivariate Mixtures. Biometrika, Oxford University Press (OUP), 2011, 98 (2), pp.403-416. 〈10.1093/biomet/asq079〉. 〈hal-00516391〉

Partager

Métriques

Consultations de la notice

285

Téléchargements de fichiers

185