Optimizing an Organized Modularity Measure for Topographic Graph Clustering: a Deterministic Annealing Approach

Abstract : This paper proposes an organized generalization of Newman and Girvan's modularity measure for graph clustering. Optimized via a deterministic annealing scheme, this measure produces topologically ordered graph clusterings that lead to faithful and readable graph representations based on clustering induced graphs. Topographic graph clustering provides an alternative to more classical solutions in which a standard graph clustering method is applied to build a simpler graph that is then represented with a graph layout algorithm. A comparative study on four real world graphs ranging from 34 to 1 133 vertices shows the interest of the proposed approach with respect to classical solutions and to self-organizing maps for graphs.
Type de document :
Article dans une revue
Neurocomputing / EEG Neurocomputing, Elsevier, 2010, 73 (7-9), pp.Pages 1142-1163. <10.1016/j.neucom.2009.11.023>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00515892
Contributeur : Fabrice Rossi <>
Soumis le : mercredi 8 septembre 2010 - 11:13:14
Dernière modification le : jeudi 9 février 2017 - 15:20:05

Identifiants

Citation

Fabrice Rossi, Nathalie Villa-Vialaneix. Optimizing an Organized Modularity Measure for Topographic Graph Clustering: a Deterministic Annealing Approach. Neurocomputing / EEG Neurocomputing, Elsevier, 2010, 73 (7-9), pp.Pages 1142-1163. <10.1016/j.neucom.2009.11.023>. <hal-00515892>

Partager

Métriques

Consultations de la notice

85