Facial colorings using Hall's Theorem

Abstract : A vertex coloring of a plane graph is ℓ-facial if every two distinct vertices joined by a facial walk of length at most ℓ receive distinct colors. It has been conjectured that every plane graph has an ℓ-facial coloring with at most 3ℓ+1 colors. We improve the currently best known bound and show that every plane graph has an ℓ-facial coloring with at most 7ℓ/2+6 colors. Our proof uses the standard discharging technique, however, in the reduction part we have successfully applied Hall's Theorem, which seems to be quite an unusual approach in this area.
Type de document :
Article dans une revue
European Journal of Combinatorics, Elsevier, 2010, 31 (3), pp.1001--1019. <10.1016/j.ejc.2009.10.003>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00487100
Contributeur : Jean-Sébastien Sereni <>
Soumis le : jeudi 27 mai 2010 - 22:35:19
Dernière modification le : mercredi 12 octobre 2016 - 01:23:13
Document(s) archivé(s) le : vendredi 19 octobre 2012 - 15:10:23

Fichier

HKSS10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Frédéric Havet, Daniel Král', Jean-Sébastien Sereni, Riste Skrekovski. Facial colorings using Hall's Theorem. European Journal of Combinatorics, Elsevier, 2010, 31 (3), pp.1001--1019. <10.1016/j.ejc.2009.10.003>. <hal-00487100>

Partager

Métriques

Consultations de
la notice

279

Téléchargements du document

124