How to Semantically Enhance a Data Mining Process?

Abstract : This paper presents the KEOPS data mining methodology centered on domain knowledge integration. KEOPS is a CRISP-DM compliant methodology which integrates a knowledge base and an ontology. In this paper, we focus first on the pre-processing steps of business understanding and data understanding in order to build an ontology driven information system (ODIS). Then we show how the knowledge base is used for the post-processing step of model interpretation. We detail the role of the ontology and we define a part-way interestingness measure that integrates both objective and subjective criteria in order to eval model relevance according to expert knowledge. We present experiments conducted on real data and their results.
Type de document :
Article dans une revue
Lecture Notes in Business Information Processing, Springer-Verlag, 2009, 13, pp.103-116
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00476279
Contributeur : Nicolas Pasquier <>
Soumis le : lundi 26 avril 2010 - 02:29:14
Dernière modification le : jeudi 12 février 2015 - 17:03:58
Document(s) archivé(s) le : mardi 28 septembre 2010 - 13:31:08

Fichier

How_to_Semantically_Enhance_a_...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00476279, version 1

Collections

Citation

Laurent Brisson, Martine Collard. How to Semantically Enhance a Data Mining Process?. Lecture Notes in Business Information Processing, Springer-Verlag, 2009, 13, pp.103-116. <hal-00476279>

Partager

Métriques

Consultations de
la notice

146

Téléchargements du document

159