A comparative study of semiempirical, ab initio, and DFT methods in evaluating metal-ligand bond strength, proton affinity, and interactions between first and second shell ligands in Zn-biomimetic complexes - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Computational Chemistry Année : 2008

A comparative study of semiempirical, ab initio, and DFT methods in evaluating metal-ligand bond strength, proton affinity, and interactions between first and second shell ligands in Zn-biomimetic complexes

Résumé

Although theoretical methods are now available which give very accurate results, often comparable to the experimental ones, modeling chemical or biological interesting systems often requires less demanding and less accurate theoretical methods, mainly due to computer limitations. Therefore, it is crucial to know the precision of such less reliable methods for relevant models and data. This has been done in this work for small zinc-active site models including O- (H2O and OH-) and N-donor (NH3 and imidazole) ligands. Calculations using a number of quantum mechanical methods were carried out to determine their precision for geometries, coordination number relative stability, metal–ligand bond strengths, proton affinities, and interaction energies between first and second shell ligands. We have found that obtaining chemical accuracy can be as straightforward as HF geometry optimization with a double-f plus polarization basis followed by a B3LYP energy calculation with a triple-f quality basis set including diffuse and polarization functions. The use of levels as low as PM3 geometry optimization followed by a B3LYP single-point energy calculation with a double-tzeta quality basis including polarization functions already yields useful trends in bond length, proton affinities or bond dissociation energies, provided that appropriate caution is taken with the optimized structures. The reliability of these levels of calculation has been successfully demonstrated for real biomimetic cases.
Fichier principal
Vignette du fichier
manuscript-full.pdf (537.97 Ko) Télécharger le fichier
supporting_information.pdf (81.12 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00466475 , version 1 (23-03-2010)

Identifiants

Citer

Gilles Frison, Gilles Ohanessian. A comparative study of semiempirical, ab initio, and DFT methods in evaluating metal-ligand bond strength, proton affinity, and interactions between first and second shell ligands in Zn-biomimetic complexes. Journal of Computational Chemistry, 2008, 29, pp.416-433. ⟨10.1002/jcc.20800⟩. ⟨hal-00466475⟩
158 Consultations
4975 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More