On Manin's conjecture for a family of Châtelet surfaces

Abstract : The Manin conjecture is established for Châtelet surfaces over Q arising as minimal proper smooth models of the surface Y^2+Z^2=f(X) where f is a totally reducible polynomial of degree 3 without repeated roots. These surfaces do not satisfy weak approximation.
Document type :
Journal articles
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00452827
Contributor : <>
Submitted on : Wednesday, February 3, 2010 - 10:32:03 AM
Last modification on : Thursday, February 7, 2019 - 4:38:50 PM

Links full text

Identifiers

Citation

Régis de La Bretèche, Tim Browning, Emmanuel Peyre. On Manin's conjecture for a family of Châtelet surfaces. Annals of Mathematics, Princeton University, Department of Mathematics, 2012, 175 (1), pp.297 - 343. ⟨10.4007/annals.2012.175.1.8⟩. ⟨hal-00452827⟩

Share

Metrics

Record views

132