Convergence properties and numerical simulation by an adaptive FEM of the thermistor problem

Claire Chauvin 1, 2, * Pierre Saramito 3 Christophe Trophime 4
* Corresponding author
1 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
INRIA Lorraine, CRISAM - Inria Sophia Antipolis - Méditerranée , UHP - Université Henri Poincaré - Nancy 1, Université Nancy 2, INPL - Institut National Polytechnique de Lorraine, CNRS - Centre National de la Recherche Scientifique : UMR7502
3 EDP - Equations aux Dérivées Partielles
LJK - Laboratoire Jean Kuntzmann
Abstract : In this paper, the convergence properties of the finite element approximation of the thermistor problem are investigated, both from theoretical and numerical point of view. From one hand, based on a duality argument, a theoretical convergence result is proved under low regularity assumption. From other hand, numerical experiments are performed based on a decoupled algorithm. Moreover, on a non convex domain, the convergence properties versus the mesh size are shown to be improved by using suitable mesh adaptation strategy and error estimator.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [17 references]  Display  Hide  Download
Contributor : Claire Chauvin <>
Submitted on : Monday, January 25, 2010 - 9:43:31 AM
Last modification on : Wednesday, April 11, 2018 - 1:58:17 AM
Document(s) archivé(s) le : Thursday, October 18, 2012 - 1:10:08 PM


Files produced by the author(s)


  • HAL Id : hal-00449960, version 1


Claire Chauvin, Pierre Saramito, Christophe Trophime. Convergence properties and numerical simulation by an adaptive FEM of the thermistor problem. 2007. 〈hal-00449960〉



Record views


Files downloads